
Persistent Approximation Property for C*-algebras
with propagation
(jointwork with G. Yu)

H. Oyono Oyono

June 17, 2013

Special Week on Operator Algebras, June 17–21, 2013,
Research Center for Operator Algebras, East China Normal University.
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Operator propagation

Let X be a proper metric space (i.e closed balls are compact) and
let π : C0(X )→ L(H) be a representation of C0(X ) on a Hilbert
space H.

Example : H = L2(µ,X ) for µ Borelian measure on X and π the
pointwise multiplication.

Definition
If T is an operator of L(H), then Supp T is the complementary of
the open subset of X × X

{(x , y) ∈ X × X such that ∃f and g ∈ Cc(X ) such that
f (x) 6= 0, g(y) 6= 0 and π(f ) · T · π(g) = 0}

T has propagation less than r if d(x , y) ≤ r for all (x , y) in Supp T .
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Propagation and indices
Let D be an elliptic differential operator on a compact manifold M.

Let Q be a parametrix for D.
Then S0 := Id −QD and S1 := Id − DQ are smooth kernel
operators on M ×M:

PD =

(
S0

2 S0(Id + S0)Q
S1D Id − S1

2

)
is an idempotent and we can choose Q such that PD has arbitrary
small propagation.
D is a Fredholm operator and

Ind D=[P]−
[(

0 0
0 Id

)]
∈ K0(K(L2(M)) ∼= Z.

How can we keep track of the propagation and have homotopy
invariance?
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Quasi-projections

Definition (Quasi-projection)
If X be a proper metric space and π : C0(X )→ L(H) is a
representation of C0(X ) on a Hilbert space H, let 0 < ε < 1/4 (control)
and r > 0 (propagation). Then q in L(H) is an ε-r -projection if q = q∗,
‖q2 − q‖ < ε and q has propagation less than r .

If q is an ε-r -projection, then its spectrum has a gap around 1/2.
Hence there exists κ : Sp q → {0,1} continuous and such that
κ(t) = 0 if t < 1/2 and κ(t) = 1 if t > 1/2.
By continuous functional calculus, κ(q) is a projection such that
‖κ(q)− q‖ < 2ε;
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Quasi-projections and indices
Let D be a differential elliptic operator on a manifold, let Q be a
parametrix. Set S0 := Id −QD and S1 := Id − DQ and

PD =

(
S0

2 S0(Id + S0)Q
S1D Id − S1

2

)
.

Then

((2P∗D − 1)(2PD − 1) + 1)1/2PD((2P∗D − 1)(2PD − 1) + 1)−1/2

is a projection conjugated to the idempotent PD ;
Choosing Q = Qε,r with propagation small enought and
approximating
((2P∗D − 1)(2PD − 1) + 1)1/2PD((2P∗D − 1)(2PD − 1) + 1)−1/2 using
a power serie, we can for all 0 < ε < 1/4 and r > 0, construct a
ε-r -projection qε,rD such that

Ind D = [κ(qε,rD )]−
[(

0 0
0 Id

)]
in K0(K(L2(M)) ∼= Z.
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The framework : Filtered algebras

Definition
A filtered C∗-algebra A is a C∗-algebra equipped with a family (Ar )r>0
of linear subspaces:

Ar ⊂ Ar ′ if r 6 r ′;
Ar is closed under involution;
Ar · Ar ′ ⊂ Ar+r ′ ;
the subalgebra

⋃
r>0 Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar
for every positive number r .
The elements of Ar are said to have propagation less than r .
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Examples
K(L2(X , µ)) for X a metric space and µ probability measure on X .

More generally A⊗K(L2(X , µ)) for A is a C∗-algebra
Roe algebras:

I Σ proper discrete metric space, H separable Hilbert space
I C[Σ]r : space of locally compact operators on `2(Σ)⊗H (i.e T

satisfies fT and Tf compact for all f ∈ Cc(Σ)) and with propagation
less than r .

I The Roe algebra of Σ is C∗(Σ) = ∪r>0C[Σ]r ⊂ L(`2(Σ)⊗H)
(filtered by (C[Σ]r )r>0).

C∗-algebras of groups and cross-products:
I If Γ is a discrete finitely generated group equipped with a word

metric. Set

C[Γ]r = {x ∈ C[Γ] with support in B(e, r)}.

Then C∗red (Γ) and C∗max (Γ) are filtered by (C[Γ]r )r>0.
I More generally, if Γ acts on a A by automorphisms, then A ored Γ

and A omax Γ are filtered C∗-algebras.
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H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2013 7 / 26



Examples
K(L2(X , µ)) for X a metric space and µ probability measure on X .
More generally A⊗K(L2(X , µ)) for A is a C∗-algebra
Roe algebras:

I Σ proper discrete metric space, H separable Hilbert space

I C[Σ]r : space of locally compact operators on `2(Σ)⊗H (i.e T
satisfies fT and Tf compact for all f ∈ Cc(Σ)) and with propagation
less than r .

I The Roe algebra of Σ is C∗(Σ) = ∪r>0C[Σ]r ⊂ L(`2(Σ)⊗H)
(filtered by (C[Σ]r )r>0).

C∗-algebras of groups and cross-products:
I If Γ is a discrete finitely generated group equipped with a word

metric. Set

C[Γ]r = {x ∈ C[Γ] with support in B(e, r)}.

Then C∗red (Γ) and C∗max (Γ) are filtered by (C[Γ]r )r>0.
I More generally, if Γ acts on a A by automorphisms, then A ored Γ

and A omax Γ are filtered C∗-algebras.
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Almost projections, almost unitaries

Let A = (Ar )r>0 be a unital filtered C∗-algebra, r > 0 (propagation) and
0 < ε < 1/4 (control):

p ∈ Ar is an ε-r -projection if p ∈ Ar , p = p∗ and ‖p2 − p‖ < ε.

u ∈ Ar is an ε-r -unitary if u ∈ Ar , ‖u∗ · u − 1‖ < ε and
‖u · u∗ − 1‖ < ε.
Pε,r (A) is the set of ε-r -projections of A.
an ε-r projection p gives rise to a projection κ(p) by functional
calculus.
Uε,r (A) is the set of ε-r -unitaries of A.
Pε,r∞ (A) =

⋃
n∈N Pε,r (Mn(A)) for

Pε,r (Mn(A)) ↪→ Pε,r (Mn+1(A)); x 7→ diag(x ,0).
Uε,r
∞ (A) =

⋃
n∈N Uε,r (Mn(A)) for

Uε,r (Mn(A)) ↪→ Uε,r (Mn+1(A)); x 7→ diag(x ,1).
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Quantitative K -(semi)-groups
Define for a unital C∗-algebra A, r > 0 and 0 < ε < 1/4 the homotopy
equivalence relations on Pε,r∞ (A)× N and Uε,r

∞ (A) (recall that
Pε,r∞ (A) =

⋃
n∈N Pε,r (Mn(A)) and Uε,r

∞ (A) =
⋃

n∈N Uε,r (Mn(A)) )

:
(p, l) ∼ (q, l ′) if there exists k ∈ N and h ∈ Pε,r∞ (C([0,1],A)) s.t
h(0) = diag(p, Ik+l ′) and h(1) = diag(q, Ik+l).
u ∼ v if there exists h ∈ Uε,r

∞ (C([0,1],A) s.t h(0) = u and h(1) = v .

Definition
1 K ε,r

0 (A) = Pε,r (A)/ ∼ and [p, l]ε,r is the class of (p, l) mod. ∼;
2 K ε,r

1 (A) = Uε,r (A)/ ∼ and [u]ε,r is the class of u mod. ∼.

K ε,r
0 (A) is an abelian group for

[p, l]ε,r + [p′, l ′]ε,r = [diag(p,p′), l + l ′]ε,r ;
K ε,r

1 (A) is an abelian semi-group for [u]ε,r + [v ]ε,r = [diag(u, v)]ε,r ;
if u is a ε-r -unitary, then [u]3ε,2r + [u∗]3ε,2r = [1]3ε,2r .
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The non-unital case
Lemma

K ε,r
0 (C)

∼=→ Z; [p, l]ε,r 7→ rank κ(p)− l ; K ε,r
1 (C) ∼= {0}.

Definition
If A is a non unital filtered C∗-algebra and Ã the unitarization of A,

K ε,r
0 (A) = ker : K ε,r

0 (Ã)→ K ε,r
0 (C) ∼= Z;

K ε,r
1 (A) = K ε,r

1 (Ã);

Definition
If A and B are filtered C∗-algebras with respect to (Ar )r>0 and (Br )r>0,
a homomorphism f : A→ B is filtered if f (Ar ) ⊂ Br .

A filtered f : A→ B induces f ε,r∗ : K ε,r
∗ (A)→ K ε,r

∗ (B);

A ↪→ A⊗K(H); a 7→ a⊗e1,1 induces K ε,r
∗ (A)

∼=→ K ε,r
∗ (A⊗K(`2(N))).
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Structure homomorphisms
For any filtered C∗-algebra A, 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, we
have natural structure homomorphisms

ιε,r0 : K ε,r
0 (A)−→K0(A); [p, l]ε,r 7→ [κ(p)]− [Il ];

ιε,r1 : K ε,r
1 (A)−→K1(A); [u]ε,r 7→ [u];

ιε,r∗ = ιε,r0 ⊕ ι
ε,r
1 ;

ιε,ε
′,r ,r ′

0 : K ε,r
0 (A)−→K ε′,r ′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r ′ ;
ιε,ε
′,r ,r ′

1 : K ε,r
1 (A)−→K ε′,r ′

1 (A); [u]ε,r 7→ [u]ε′,r ′ .
ιε,ε
′,r ,r ′

∗ = ιε,ε
′,r ,r ′

0 ⊕ ιε,ε
′,r ,r ′

1 .
For any ε ∈ (0,1/4) and any projection p (resp. unitary u) in A, there
exists r > 0 and q (resp. v) an ε-r -projection (resp. an ε-r -unitary) of A
such that κ(q) and p are closed and hence homotopic projections
(resp. u et v are homotopic invertibles)

Consequence

For every ε ∈ (0,1/4) and y ∈ K∗(A), there exists r and x in K ε,r
∗ (A)

such that ιε,r∗ (x) = y .

H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2013 11 / 26



Structure homomorphisms
For any filtered C∗-algebra A, 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, we
have natural structure homomorphisms

ιε,r0 : K ε,r
0 (A)−→K0(A); [p, l]ε,r 7→ [κ(p)]− [Il ];

ιε,r1 : K ε,r
1 (A)−→K1(A); [u]ε,r 7→ [u];

ιε,r∗ = ιε,r0 ⊕ ι
ε,r
1 ;

ιε,ε
′,r ,r ′

0 : K ε,r
0 (A)−→K ε′,r ′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r ′ ;
ιε,ε
′,r ,r ′

1 : K ε,r
1 (A)−→K ε′,r ′

1 (A); [u]ε,r 7→ [u]ε′,r ′ .
ιε,ε
′,r ,r ′

∗ = ιε,ε
′,r ,r ′

0 ⊕ ιε,ε
′,r ,r ′

1 .

For any ε ∈ (0,1/4) and any projection p (resp. unitary u) in A, there
exists r > 0 and q (resp. v) an ε-r -projection (resp. an ε-r -unitary) of A
such that κ(q) and p are closed and hence homotopic projections
(resp. u et v are homotopic invertibles)

Consequence

For every ε ∈ (0,1/4) and y ∈ K∗(A), there exists r and x in K ε,r
∗ (A)

such that ιε,r∗ (x) = y .
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Controlled index map
Recall that if D is an elliptic differential operator on a compact
manifold M, then for every 0 < ε < 1/4 and r > 0, there exists qε,rD
an ε-r -projection in K(L2(M)) s.t. Ind D = [κ(qε,rD )]−

[(
0 0
0 Id

)]
;

We can define in this way a controlled index Indε,r D = [qε,rD ,1] in
K ε,r

0 (K(L2(M))) such that Ind D = ιε,r0 (Indε,r D);
More generally, we have:

Lemma
Let X be a cpct metric space, then for any 0 < ε < 1/4 and any r > 0,
there exists a controlled index map Indε,rX : K0(X )→ K ε,r

0 (K(L2(X ))) s.t

1 ιε,ε
′,r ,r ′

0 ◦ Indε,rX = Indε
′,r ′

X ;
2 the composition

K0(X )−→K ε,r
0 (K(L2(X )))

ιε,r0−→ K0(K(L2(X ))) ∼= Z

is the index map.
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Behaviour for small propagation

Theorem
Let X be a finite simplicial complex equipped with a metric. Then there
exists 0 < ε0 < 1/4 such that the following holds :

For every 0 < ε < ε0, there exists r0 > 0 such that for any 0 < r < r0
then

Indε,rX : K0(X )→ K ε,r
0 (K(L2(X )))

is an isomorphism.

Under this identification the index map Indε,rX : K0(X )→ Z is given
by

ιε,r0 : K ε,r
0 (K(L2(X )))−→K0(K(L2(X ))); [p, l]ε,r 7→ rangκ(p)− l .

Question: Can we have estimations for r0?
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Quantitative higher indices

We can also define higher indices valued in quantitative K -theory.

Recall that the Rips complex Pd (Γ) of order r is the set of
probability measures on Γ with support of diameter less than s.
There exists quantitative assembly maps

µε,r ,dΓ,A,∗ : KK Γ
∗ (C0(Pd (Γ)),A)→ K ε,r

∗ (A ored Γ)

such that ιε,r∗ ◦ µε,r ,dΓ,A,∗ is the Baum-Connes assembly maps (with
ιε,r∗ : K ε,r

∗ (•)→ K∗(•))
We can state a quantitative Baum-Connes conjecture.
This quantitative Baum-Connes conjecture is implied by the
(usual) Baum-Connes conjecture with coefficients.
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Persistent Approximation Property

Recall that for every ε ∈ (0,1/4) and y ∈ K∗(A), there exist r and x in
K ε,r
∗ (A) s.t ιε,r∗ (x) = y .

How faithfull this approximation is?

Lemma
For any ε small enough, any r > 0 and any x in K ε,r

∗ (A) s.t ιε,r∗ (x) = 0
then there exists r ′ > r such that ιε,λε,r ,r

′
∗ (x) = 0 in K λε,r ′

∗ (A) for some
universal λ > 1.

Does r ′ depend on x?

Definition (Persistent Approximation Property)
For A a filtered C∗-algebra and positive numbers ε, ε′, r and r ′ such
that 0 < ε 6 ε′ < 1/4 and 0 < r 6 r ′, define :

PA∗(A, ε, ε′, r , r ′) : for any x ∈ K ε,r
∗ (A), then ιε,r∗ (x) = 0 in K∗(A) implies

that ιε,ε
′,r ,r ′

∗ (x) = 0 in K ε′,r ′
∗ (A).
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Persistent Approximation Property

PA∗(A, ε, ε′, r , r ′) : for any x ∈ K ε,r
∗ (A), then ιε,r∗ (x) = 0 in K∗(A) implies

that ιε,ε
′,r ,r ′

∗ (x) = 0 in K ε′,r ′
∗ (A)

is equivalent to:

the restriction of ιε
′,r ′
∗ : K ε′,r ′

∗ (A) −→ K∗(A) to ιε,ε
′,r ,r ′

∗ (K ε,r
∗ (A)) is

one-to-one.

Example

If A = K(`2(Σ)) for Σ discrete metric set.
PA0(A, ε, ε′, r , r ′) holds if for any ε-r -projections q and q′ in
K(`2(Σ)⊗H) such that rangκ(q) = rangκ(q′), then q and q′ are
homotopic ε′-r ′-projections up to stabilization.
PA1(A, ε, ε′, r , r ′) holds if for any two ε-r -unitaries (in
K(`2(Σ)⊗H) + CId) are homotopic as ε′-r ′-unitaries.
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Examples
Definition (Universal example for proper actions)
A locally compact space Z is a universal example for proper actions of
Γ if for any locally compact space X provided with a proper action of Γ,
there exists f : X → Z continuous and equivariant, and any two such
maps are equivariantly homotopic.

Every group admits a universal example for proper actions.

Theorem
Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action;

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A ored Γ, ε, λε, r , r ′) holds for any Γ-C∗-algebra A.

Examples: Γ hyperbolic, Γ Haagerup with cocompact universal
example, Γ fundamental group of a compact oriented 3-manifolds.
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Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action;

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A ored Γ, ε, λε, r , r ′) holds for any Γ-C∗-algebra A.

Examples: Γ hyperbolic, Γ Haagerup with cocompact universal
example, Γ fundamental group of a compact oriented 3-manifolds.
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The geometric case

Observation : we can identify C0(Γ) o Γ as a filtered C∗-algebra to
K(`2(Γ)) and

(recall that κ(q) is the spectral projection affiliated to q)
ιε,r∗ : K ε,r

∗ (K(`2(Γ))→ K∗(K(`2(Γ)) ∼= Z : [q, l]ε,r 7→ rangκ(q)− l .

Corollary
Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action.

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A⊗K(`2(Γ)), ε, λε, r , r ′) holds for any C∗-algebra
A.

The Gromov group does not satisfy the conclusion of the corollary.
This statement is purely geometric.
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H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2013 18 / 26



The geometric case

Observation : we can identify C0(Γ) o Γ as a filtered C∗-algebra to
K(`2(Γ)) and (recall that κ(q) is the spectral projection affiliated to q)
ιε,r∗ : K ε,r

∗ (K(`2(Γ))→ K∗(K(`2(Γ)) ∼= Z : [q, l]ε,r 7→ rangκ(q)− l .

Corollary
Let Γ be a finitely generated discrete group. Assume that

Γ satisfies the Baum-Connes conjecture with coefficients;
Γ has a cocompact universal example for proper action.

Then for a universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

r ′ > r such that PA∗(A⊗K(`2(Γ)), ε, λε, r , r ′) holds for any C∗-algebra
A.

The Gromov group does not satisfy the conclusion of the corollary.
This statement is purely geometric.
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Coarse geometry

Let (Σ,d) be a proper discrete metric space;
Σ has bounded geometry if for all r > 0, there exists an integer N
such that any ball of radius r has cardinal less than N (example Γ
finitely generated group equipped with the word metric) ;

Let (Σ′,d ′) be another proper discrete metric space. A map
f : Σ→ Σ′ is coarse if

I f is proprer ;
I ∀r > 0, ∃s > 0 such that d(x , y) < r ⇒ d ′(f (x), f (y)) < s;

A coarse map f : Σ→ Σ′ is a coarse equivalence if there is a
coarse map g : Σ′ → Σ and M > 0 such that d(f ◦ g(y), y) < M
and d(g ◦ f (x), x) < M ∀x ∈ X and ∀y ∈ Y .
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The geometrical Persistent Approximation Property
Definition
Let (Σ,d) a proper discrete metric space. We say that Σ satisfies the
geometrical Persistent Approximation Property if there exists λ > 1
such that for any 0 < ε 6 1

4λ and any r > 0, there exists r ′ > r and
ε′ ∈ [ε,1/4) such that PA∗(A⊗K(`2(Σ)), ε, ε′, r , r ′) holds for any
C∗-algebra A.

Remark
The geometrical Persistent Approximation Property is invariant under
coarse equivalence.

Example
If Γ (finitely generated) satisfies the Baum-Connes conjecture with
coefficients and admits a cocompact universal example for proper
action, then |Γ| satisfies the geometrical Persistent Approximation
Property.
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Coarse uniform contractibility property

Let (Σ,d) be a discrete metric space with bounded geometry.

Recall
that the Rips complex of degree r is the set Pr (Σ) of probability
measures on Σ with support of diameter less than r (notice that
Pr (Σ) ⊂ Pr ′(Σ) if r 6 r ′).

Definition
Σ has the uniform coarse contractibility property if for any r > 0, there
exists r ′ > r such that every compact subset in Pr (Σ) lies in a
contractible compact subset of Pr ′(Σ).

Example : Σ Gromov hyperbolic.

H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2013 21 / 26



Coarse uniform contractibility property

Let (Σ,d) be a discrete metric space with bounded geometry. Recall
that the Rips complex of degree r is the set Pr (Σ) of probability
measures on Σ with support of diameter less than r (notice that
Pr (Σ) ⊂ Pr ′(Σ) if r 6 r ′).

Definition
Σ has the uniform coarse contractibility property if for any r > 0, there
exists r ′ > r such that every compact subset in Pr (Σ) lies in a
contractible compact subset of Pr ′(Σ).

Example : Σ Gromov hyperbolic.
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H. Oyono Oyono (Université de Lorraine) Persistent Approximation Property June 17, 2013 21 / 26



Coarse uniform contractibility property

Let (Σ,d) be a discrete metric space with bounded geometry. Recall
that the Rips complex of degree r is the set Pr (Σ) of probability
measures on Σ with support of diameter less than r (notice that
Pr (Σ) ⊂ Pr ′(Σ) if r 6 r ′).

Definition
Σ has the uniform coarse contractibility property if for any r > 0, there
exists r ′ > r such that every compact subset in Pr (Σ) lies in a
contractible compact subset of Pr ′(Σ).

Example : Σ Gromov hyperbolic.
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Coarse embedding in a Hilbert space

Definition
Σ coarsely embeds in a Hilbert space H if there exists f : Σ→ H s.t :
for all R > 0, there exists S > 0 s.t d(x , y) < R ⇒ ‖f (x)− f (y)‖ < S
and ‖f (x)− f (y)‖ < R ⇒ d(x , y) < S.

Examples : Σ Gromov hyperbolic, Γ amenable group, linear...

Theorem
Let Σ be a discrete metric space with bounded geometry. Assume that

Σ coarsely embeds in a Hilbert space;
Σ satisfies the uniform coarse contractibility property.

Then Σ satisfies the geometrical Persistent Approximation Property.
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Control indices with coefficients
Let X be a cpct metric space,and let A be a C∗-algebra. Then for
any 0 < ε < 1/4 and any r > 0, the control index map admits a
version with coefficient

Indε,rX ,A : KK∗(C(X ),A)→ K ε,r
∗ (K(A⊗L2(X )))

compatible with the maps ιε,ε
′,r ,r ′

∗ and such that the composition

KK∗(C(X ),A)−→K ε,r
∗ (A⊗K(L2(X )))

ιε,r∗−→ K∗(A⊗K(L2(X ))) ∼= K∗(A)

is induced by X 7→ {∗}.

If Σ be a be discrete metric space with bounded geometry and X
a compact subset of Pd (Σ), then we have an inclusion
K(L2(X )) ↪→ K(L2(Pd (Σ))) with propagation increasing controlled
independantly on X (indeed r 7→ r + cst).
Σ and Pd (Σ) are coarse equivalent, hence there is an
isomorphism K(L2(Pd (Σ))) ∼= K(`2(Σ)) with propagation
increasing controlled.
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Compactly supported coarse assembly maps

Let Σ be a discrete metric space with bounded geometry, let A be a
C∗-algebra. Let us set AΣ = A⊗K(`2(Σ).

Indε,rX ,A : KK∗(C(X ),A)→ K ε,r
∗ (K(A⊗L2(X ))),

A⊗K(L2(X )) ↪→ K(A⊗L2(Pd (Σ))) and
K(A⊗L2(Pd (Σ))) ∼= K(A⊗`2(Σ)) give rise to a bunch of compactly
supported coarse assembly maps:

µε,r ,sΣ,A,∗; lim
X

KK∗(C(X ),A)−→K ε,r
∗ (AΣ),

where in the limit, X runs through compact subspace of the Rips
complex Ps(Σ), for r > rΣ,d ,ε, with rΣ,d ,ε decreasing in ε and
increasing in d ;
These maps are compatible with inclusions Ps(Σ) ↪→ Ps′(Σ) and
structure map ιε,ε

′,r ,r ′
∗ : K ε,r

∗ (AΣ)→ K ε′,r ′
∗ (AΣ).
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Quantitative statements
For Σ discrete metric space with bounded geometry, and A a C∗-alg.,
we set K∗(Pd (Σ),A) = limX⊂Pd (Σ) cpct KK∗(C(X ),A).

Consider

QIΣ,A,∗(d ,d ′, r , ε) for any element x in K∗(Pd (Σ),A), then µε,r ,dΣ,A,∗(x) = 0
in K ε,r

∗ (AΣ) implies that q∗d ,d ′(x) = 0 in K∗(Pd ′(Σ),A).

QSΣ,A,∗(d , r , r ′, ε, ε′) for every y in K ε′,r ′
∗ (AΣ), there exists an element

x in K∗(Pd (Σ),A) such that µε,r ,dΣ,,A,∗(x) = ιε
′,ε,r ′,r
∗ (y).

Theorem

If Σ uniformaly embeds into a Hilbert space .
1 Then for any positive numbers d, ε and r > rΣ,d ,ε with ε < 1/4 and

r > rΣ,d ,ε, there exists a positive number d ′ with d ′ > d such that
QIΣ,,A(d ,d ′, r , ε) is satisfied for every C∗-algebra A;

2 For some λ > 1 and for any positive numbers ε and r ′ with ε < 1
4λ ,

there exist positive numbers d and r with rΣ,d ,ε 6 r and r ′ 6 r
such that QSΣ,A(d , r , r ′, λε, ε) is satisfied for every C∗-algebra A.
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Application to Novikov conjecture

Theorem
Let Σ be a be discrete metric space with bounded geometry. Assume
that the following assertions hold:

1 for any d, ε and r > rΣ,d ,ε with ε < 1/4 and r > rΣ,d ,ε, there exists
d ′ with d ′ > d such that QIF ,C(d ,d ′, r , ε) is satisfied for any finite
subset F of Σ;

2 For any ε and r ′ with ε < 1
4 , there exist positive numbers d, ε′ and

r with rΣ,d ,ε 6 r , r ′ 6 r and ε < ε′ < 1
4 , such that

QSF ,C(d , r , r ′, ε′, ε) is satisfied for every for any finite subset F of
Σ;

Then Σ satisfies the coarse Baum-Connes conjecture.

In particular, if Σ = Γ is a finitely generated group, then and under the
assumptions of the theorem, Γ satisfies the Novikov conjecture.
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